

10-01 SEQUENCES

Sequence

• List of numbers following a rule

- •0, 3, 6, 9, 12 <- finite (ends)
- •0, 3, 6, 9, 12, ... <- infinite (doesn't end)

n = 1, 2, 3, 4, 5, ... (term #) like x

• $a_n = 0, 3, 6, 9, 12, \dots$ (term value) like y

10-01 SEQUENCES

• Find the $1^{st} 5$ terms of $a_n = 5 + 2n(-1)^n$

 $a_1 = 5 + 2(1)(-1)^1 = 3$ $a_2 = 5 + 2(2)(-1)^2 = 9$

$$a_3 = 5 + 2(3)(-1)^3 = -1$$

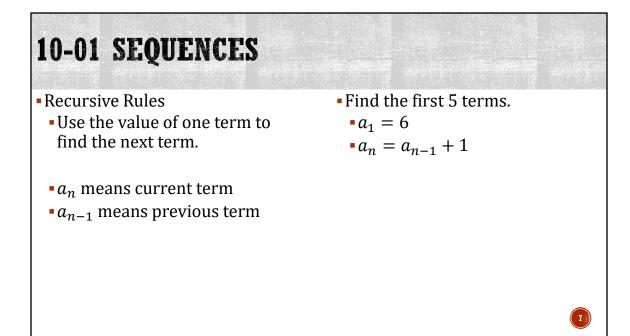
 $a_4 = 5 + 2(4)(-1)^4 = 13$
 $a_5 = 5 + 2(5)(-1)^5 = -5$

10-01 SEQUENCES

• Write the rule for the nth term. 1, 5, 9, 13, 17, ...

• 2, -9, 28, -65, 126, ...

 $a_n = 4n - 3$ $a_n = (-1)^{n+1}(n^3 + 1)$



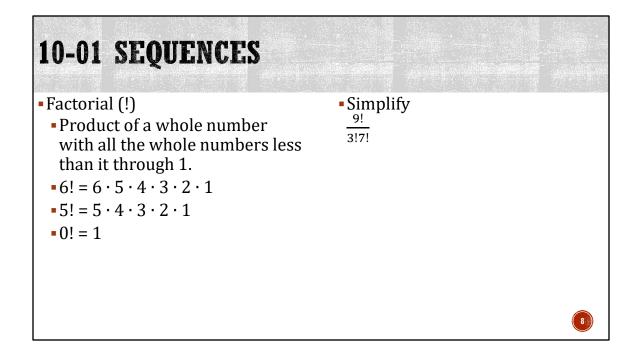
$$a_{1} = 6$$

$$a_{2} = a_{1} + 1 = 6 + 1 = 7$$

$$a_{3} = a_{2} + 1 = 7 + 1 = 8$$

$$a_{4} = a_{3} + 1 = 8 + 1 = 9$$

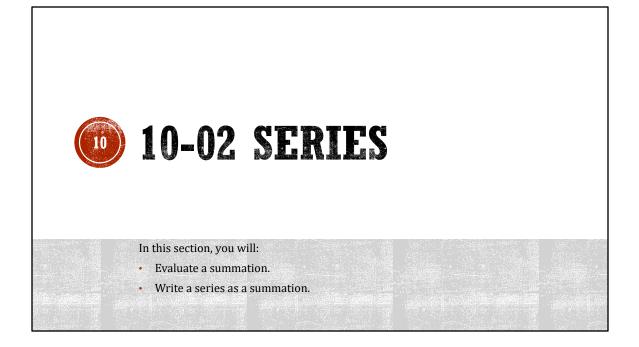
$$a_{5} = a_{4} + 1 = 9 + 1 = 10$$

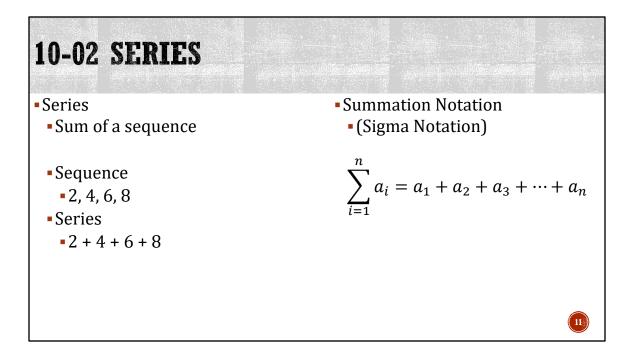


$$\begin{array}{r} 9! \\
 \overline{3!7!} \\
9 \cdot 8 \cdot 7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1 \\
\overline{3 \cdot 2 \cdot 1 \cdot 7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1} \\
 \overline{3 \cdot 2 \cdot 1 \cdot 7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1} \\
 \overline{3 \cdot 2 \cdot 1} \\
 \overline{3 \cdot 2 \cdot 1} \\
 \overline{72} \\
 \overline{6} \\
 12
\end{array}$$

• Simplify (n+1)!n!

 $\frac{\frac{(n+1)!}{n!}}{(n+1)(n)(n-1)(n-2)\cdots} \\ \frac{(n)(n-1)(n-2)\cdots}{n+1}$





i = index

1 = lower limit

n = upper limit

10-02 SERIES
• Find each sum

$$\sum_{i=1}^{4} (4i+1)$$

$$\sum_{k=2}^{5} (2+k^3)$$
(2)

$$\sum_{i=1}^{4} (4i+1) = (4(1)+1) + (4(2)+1) + (4(3)+1) + (4(4)+1)$$
$$= 5+9+13+17 = 44$$
$$\sum_{k=2}^{5} (2+k^3) = (2+2^3) + (2+3^3) + (2+4^3) + (2+5^3)$$
$$= 10+29+66+27 = 232$$

10-02 SERIES

$$\sum_{n=1}^{\infty} \frac{5}{10^n}$$

$$\sum_{n=1}^{\infty} \frac{5}{10^n}$$

Parital sums

Shortcut formulas

$$1+1+1+1+\dots = \sum_{i=1}^{n} 1 = n$$

$$1+2+3+4+\dots = \sum_{i=1}^{n} i = \frac{n(n+1)}{2}$$

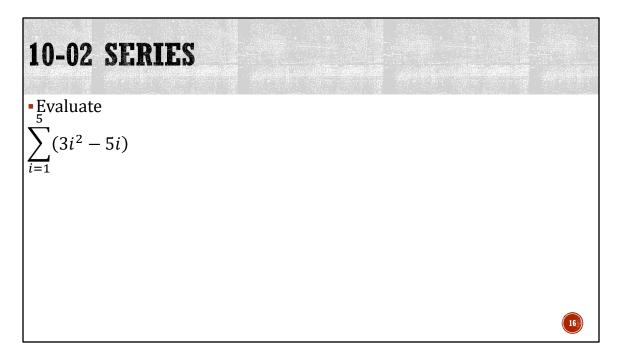
$$1+4+9+16+\dots = \sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}$$

10-02 SERIES

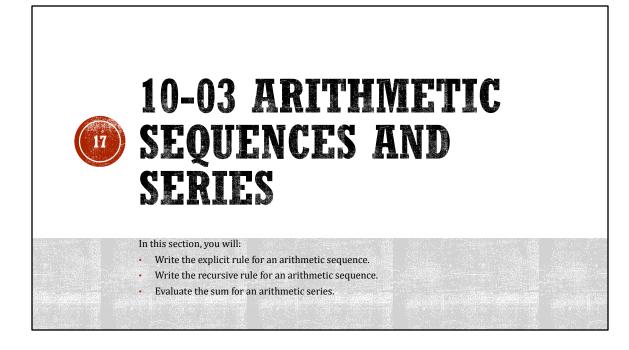
$$1 + 8 + 27 + 64 + \dots = \sum_{i=1}^{n} i^{3} = \frac{n^{2}(n+1)^{2}}{4}$$

$$1 + 16 + 81 + 256 + \dots = \sum_{i=1}^{n} i^{4} = \frac{n(n+1)(2n+1)(3n^{2}+3n-1)}{30}$$

$$1 + 32 + 243 + 1024 + \dots = \sum_{i=1}^{n} i^{5} = \frac{n^{2}(n+1)^{2}(2n^{2}+2n-1)}{12}$$



$$\sum_{i=1}^{5} 3i^2 - \sum_{i=1}^{5} 5i$$
$$= 3\left(\frac{n(n+1)(2n+1)}{6}\right) - 5\left(\frac{n(n+1)}{2}\right)$$
$$= 3\left(\frac{5(5+1)(2(5)+1)}{6}\right) - 5\left(\frac{5(5+1)}{2}\right)$$
$$= 90$$



Arithmetic

Common difference (d)

• 3, 7, 11, 15, 19, ...

- Rule for the nth term
- $a_n = dn + c$ • Where $c = a_1 - d$

$$\bullet a_n = a_1 + (n-1)d$$

• Find the rule for the nth term for 3, 7, 11, 15, 19, ...

19

d = 7 - 3 = 4; 11 - 7 = 4, 15 - 11 = 4; 19 - 15 = 4 a₁ = 3

$$a_n = a_1 + (n - 1)d$$

$$a_n = 3 + (n - 1)4$$

$$a_n = 3 + 4n - 4$$

$$a_n = 4n - 1$$

• The 8th term of an arithmetic sequence is 25, and the 12th term is 41. Write the rule for the nth term.

Fill in $a_8 = 25$ Fill in $a_{12} = 41$	$a_n = a_1 + (n - 1)d$ $25 = a_1 + (8 - 1)d$ $25 = a_1 + 7d$ $41 = a_1 + (12 - 1)d$
Solve system of eq.	$41 = a_1 + 11d$ $-25 = -a_1 - 7d$ $41 = a_1 + 11d$ 16 = 4d 4 = d
	$25 = a_1 + 7(4)$ $a_1 = -3$ $a_n = -3 + (n - 1)4$ $a_n = 4n - 7$

Recursive Rule for Arithmetic Sequences

 $a_1 = a_1$ $a_n = a_{n-1} + d$

Arithmetic Series

-1 + 3 + 5 + 7 + 9 + 11 + 13 + 15 + 17 + 19

$$\bullet S_n = \frac{n}{2}(a_1 + a_n)$$

• Find the sum of the integers 1 to 57.

23

d = 1; a₁ = 1; a_n = 57

 $1 + 2 + 3 + 4 + \dots + 57$

$$S_n = \frac{n}{2}(a_1 + a_n)$$
$$S_{57} = \frac{57}{2}(1 + 57)$$
$$S_{57} = \frac{57}{2}(58) = 1653$$

• Find the 50th partial sum of the arithmetic sequence -6, -2, 2, 6, ...

24

d = 4; $a_1 = -6$ Find nth term to get a_n

$$a_n = a_1 + (n - 1)d$$

$$a_n = -6 + (n - 1)4$$

$$a_n = 4n - 10$$

$$a_{50} = 4(50) - 10 = 190$$

Find the sum

$$S_n = \frac{n}{2}(a_1 + a_n)$$
$$S_{50} = \frac{50}{2}(-6 + 190) = 4600$$

• Evaluate $\sum_{i=1}^{100} (3i+2)$

25

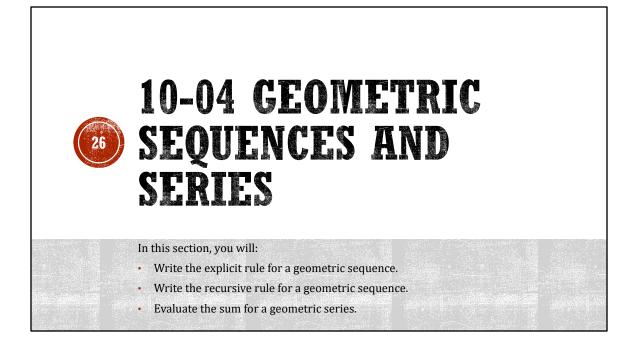
Linear (in form of $a_n = dn + c$) so arithmetic

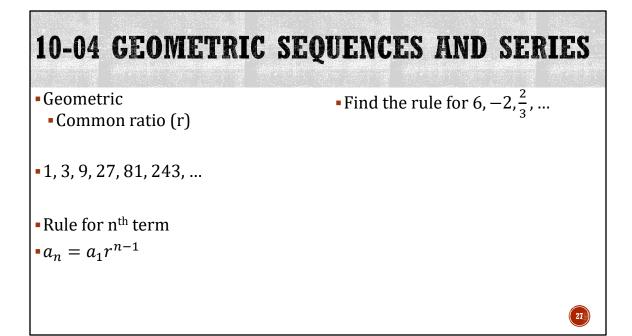
$$S_n = \frac{n}{2}(a_1 + a_n)$$

$$S_{100} = \frac{100}{2} \left((3(1) + 2) + (3(100) + 2) \right)$$

$$= 50(5 + 302)$$

$$= 15350$$





$$r = -\frac{2}{6} = -\frac{1}{3}$$
$$a_n = a_1 r^{n-1}$$
$$a_n = 6\left(-\frac{1}{3}\right)^{n-1}$$

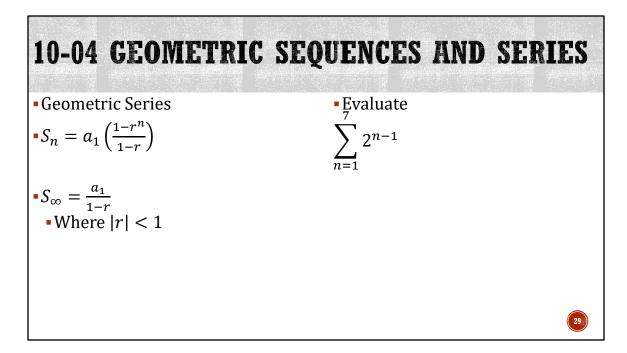
10-04 GEOMETRIC SEQUENCES AND SERIES

• The 2nd term of a geometric sequence is -18, the 5th term is 2/3. Find the rule for the nth term.

Fill in $a_2 = -18$	$a_n = a_1 r^{n-1}$
-	$-18 = a_1 r^{(2-1)}$ $-18 = a_1 r$
Γ ill in $\alpha = \frac{2}{2}$	$a_1 = -\frac{18}{r}$
Fill in $a_5 = \frac{2}{3}$	$\frac{2}{3} = a_1 r^{5-1}$
	$\frac{\frac{2}{3}}{\frac{2}{3}} = a_1 r^{5-1}$ $\frac{\frac{2}{3}}{\frac{2}{3}} = a_1 r^4$
Substitute	$\frac{2}{3} = -\frac{18}{r}r^4$
	$\frac{\frac{2}{3}}{\frac{2}{3}} = -\frac{18}{r}r^4$ $\frac{\frac{2}{3}}{\frac{2}{3}} = -18r^3$ $-\frac{1}{27} = r^3$
	$-\frac{1}{27} = r^3$

Substitute

$$-\frac{1}{3} = r$$
$$-\frac{18}{-\frac{1}{3}} = a_1$$
$$a_1 = 54$$
$$a_n = 54\left(-\frac{1}{3}\right)^{n-1}$$



 2^{n-1} is in the form a_1r^{n-1} where $a_1 = 1$ and r = 2 $S_n = a_1\left(\frac{1-r^n}{1-r}\right)$ $S_7 = 1\left(\frac{1-2^7}{1-2}\right) = 127$

10-04 GEOMETRIC SEQUENCES AND SERIES

 $\sum_{n=0}^{\infty} 5\left(\frac{1}{2}\right)^n$

Evaluate

 $5 + 0.5 + 0.05 + 0.005 + \cdots$

 $a_{1} = 5 \text{ and } r = \frac{1}{10}$ $S_{\infty} = \frac{a_{1}}{\frac{1}{5} - r}$ $= \frac{1}{\frac{1}{5} - r}$

The lower limit is not 1, so calculate n = 0

$$5\left(\frac{1}{2}\right)^0 + \sum_{n=1}^\infty 5\left(\frac{1}{2}\right)^n$$

The exponent is not n-1, so multiply and divide by $\frac{1}{2}$

$$5 + \sum_{n=1}^{\infty} 5\left(\frac{1}{2}\right) \frac{\left(\frac{1}{2}\right)^n}{\frac{1}{2}}$$

$$5 + \sum_{n=1}^{\infty} \left(\frac{5}{2}\right) \left(\frac{1}{2}\right)^{n-1}$$

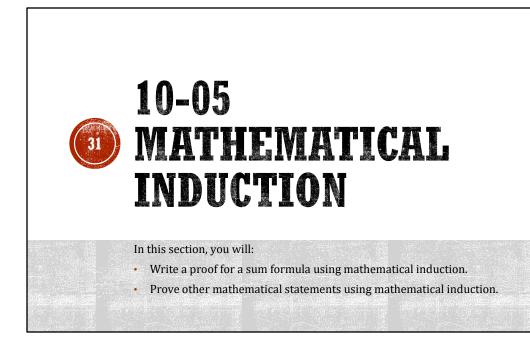
 $a_1 = \frac{5}{2}$ and $r = \frac{1}{2}$

$$S_{\infty} = \frac{a_1}{1-r}$$

$$5 + \left(\frac{\frac{5}{2}}{1-\frac{1}{2}}\right)$$

$$5 + \left(\frac{\frac{5}{2}}{\frac{1}{2}}\right)$$

$$5 + 5 = 10$$



10-05 MATHEMATICAL INDUCTION

- Proofs for sum formulas
 - Show it works when *n* = 1
 - Show it works for n + 1

Steps

- **1**. Show it works for n = 1
- 2. Assume formula works for n = k
- 3. Show it works for n = k + 1
 - If proving sum formula use $S_{k+1} = S_k + a_{k+1}$

10-05 MATHEMATICAL INDUCTION

• Prove $5 + 7 + 9 + 11 + 13 + \dots + (3 + 2n) = n(n + 4)$

33

This is in the form $a_1 + a_2 + a_3 + \dots + a_n = S_n$, so $a_n = 3 + 2n$ $S_n = n(n+4)$ 1. $S_1 = 1(1+4) = 5 = a_1$ 2. Assume $S_k = k(k+4)$ 3. $S_{k+1} = S_k + a_{k+1}$ (k+1)((k+1)+4) = k(k+4) + (3+2(k+1)) $(k+1)(k+5) = k^2 + 4k + 3 + 2k + 2$ $k^2 + 6k + 5 = k^2 + 6k + 5$

10-05 MATHEMATICAL INDUCTION

• Prove $1(1-1) + 2(2-1) + 3(3-1) + \dots + n(n-1) = \frac{n(n-1)(n+1)}{3}$

This is in the form $a_1 + a_2 + a_3 + \dots + a_n = S_n$, so $a_n = n(n-1)$ $S_n = \frac{n(n-1)(n+1)}{3}$ 1. $S_1 = \frac{1(1-1)(1+1)}{3} = 0 = a_1$ 2. Assume $S_k = \frac{k(k-1)(k+1)}{3}$ 3. $S_{k+1} = S_k + a_{k+1}$ $\frac{(k+1)((k+1)-1)((k+1)+1)}{3} = \frac{k(k-1)(k+1)}{3} + (k+1)((k+1)-1)$ $\frac{(k+1)(k)(k+2)}{3} = \frac{k^3 - k}{3} + k^2 + k$ $\frac{k^3 + 3k^2 + 2k}{3} = \frac{k^3 - k}{3} + \frac{3k^2}{3} + \frac{3k}{3}$ $\frac{k^3 + 3k^2 + 2k}{3} = \frac{k^3 - k}{3} + \frac{3k^2 + 2k}{3}$

10-05 MATHEMATICAL INDUCTION

• Prove $(n + 1)! > 2^n$ where $n \ge 2$

- 1. $n = 2: (2 + 1)! > 2^2$
 - 3! > 4
 - 6 > 4
- 2. Assume $(k + 1)! > 2^k$
- 3. Show n = k + 1: $((k + 1) + 1)! > 2^{k+1}$ $(k + 2)! > 2^{k+1}$

 - $(k+2)(k+1)! > 2^k \cdot 2$
 - (k+2) > 2 always and $(k+1)! > 2^k$ was true from step 2, so whole thing true.

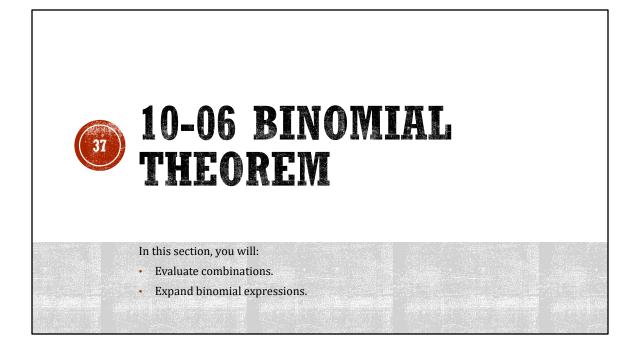
10-05 MATHEMATICAL INDUCTION

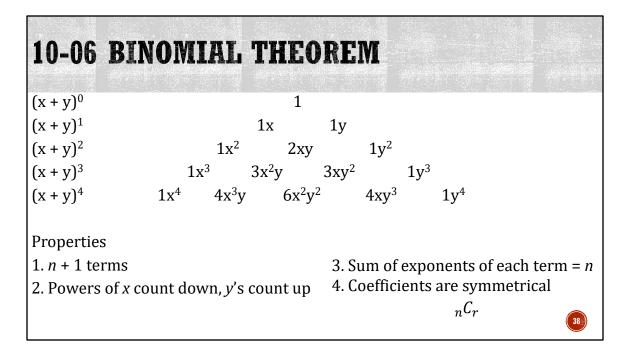
• Prove 4 is a factor of $5^n - 1$

- 1. $n = 1:5^1 1 = 4;4$ is a factor of 4
- 2. Assume 4 is a factor of $5^k 1$
- *3.* n = k + 1
 - $5^{k+1} 1$

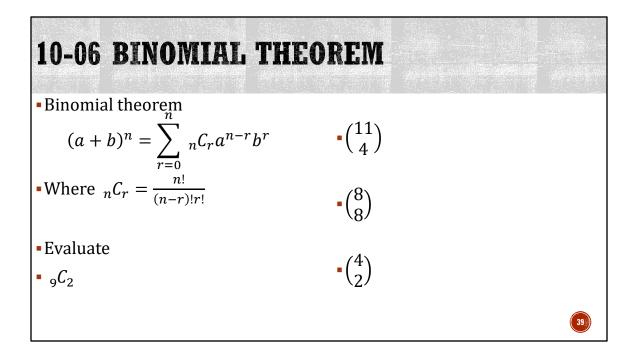
•
$$5^{k+1} - 5^k + 5^k - 1$$

- $(5^{k} \cdot 5 5^{k}) + (5^{k} 1)$ $(5^{k} \cdot 5 5^{k}) + (5^{k} 1)$ $5^{k}(5 1) + (5^{k} 1)$ $4 \cdot 5^{k} + (5^{k} 1)$ 4 is factor of both $4 \cdot 5^{k}$ and $(5^{k} 1)$





Rows are n starting at 0 Down to left diagonals are r starting at 0 nCr is the coefficient of the row and diagonal



On TI graphing calc: MATH \rightarrow PRB | nCr

Type 9 nCr 2 = 36

 $\binom{11}{4} = {}_{11}C_4 = 330$ $\binom{8}{8} = {}_{8}C_8 = 1$ $\binom{4}{2} = {}_{4}C_2 = 6$

 ${}_{9}C_{2}$

10-06 BINOMIAL THEOREM

• Expand $(x + 2)^4$

40

a = x; b = 2; n = 4

$$\sum_{r=0}^{n} {}_{n}C_{r}a^{n-r}b^{r}$$

$${}_{4}C_{0}x^{4}2^{0} + {}_{4}C_{1}x^{3}2^{1} + {}_{4}C_{2}x^{2}2^{2} + {}_{4}C_{3}x^{1}2^{3} + {}_{4}C_{4}x^{0}2^{4}$$

$$1 \cdot x^{4} \cdot 1 + 4 \cdot x^{3} \cdot 2 + 6 \cdot x^{2} \cdot 4 + 4 \cdot x \cdot 8 + 1 \cdot 1 \cdot 16$$

$$x^{4} + 8x^{3} + 24x^{2} + 32x + 16$$

10-06 BINOMIAL THEOREM

• Expand $(3 - x^2)^5$

41

 $a = 3; b = -x^{2}; n = 5$ $\sum_{r=0}^{n} {}_{n}C_{r}a^{n-r}b^{r}$ ${}_{5}C_{0}3^{5}(-x^{2})^{0} + {}_{5}C_{1}3^{4}(-x^{2})^{1} + {}_{5}C_{2}3^{3}(-x^{2})^{2} + {}_{5}C_{3}3^{2}(-x^{2})^{3} + {}_{5}C_{4}3^{1}(-x^{2})^{4}$ $+ {}_{5}C_{5}3^{0}(-x^{2})^{5}$ $1 \cdot 243 \cdot 1 + 5 \cdot 81 \cdot (-x^{2}) + 10 \cdot 27 \cdot x^{4} + 10 \cdot 9 \cdot (-x^{6}) + 5 \cdot 3 \cdot x^{8} + 1 \cdot 1$ $\cdot (-x^{10})$ $243 - 405x^{2} + 270x^{4} - 90x^{6} + 15x^{8} - x^{10}$

10-06 BINOMIAL THEOREM

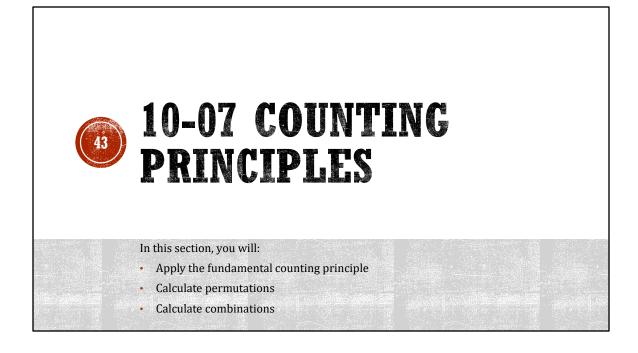
• Find the coefficient of the term a^4b^7 in $(2a - 3b)^{11}$

42

a = 2a; b = -3b; n = 11

Compare this to
$$a^4b^7$$
 to see that r = 7
 $a^{11}C_7(2a)^{11-7}(-3b)^7$
 $a^{30}(16a^4)(-2187b^7)$
 $-11,547,360a^4b^7$

-11,547,360



10-07	COUNTING	PRINCIPLES				
 Fundamental Counting Principle If events E₁ and E₂ occur in m₁ and m₂ ways, the number of ways both events can occur is m₁·m₂. 						
 A lock will open with the right choice of 3 numbers. How many different sets of 3 numbers can you choose if each number is from 1 to 30 inclusive? (a) with repetition (b) without repetition 						
		44				

a. 30·30·30 = 27000
b. 30·29·28 = 24360

• How many license plates can be made if each is 2 letters follow by 4digits? (a) with repetition (b) without repetition

a. 26·26·10·10·10·10 = 6,760,000

b. 26·25·10·9·8·7 = 3,276,000

10-07 COUNTING PRINCIPLES
• Permutation
• Number of ways to order *n* objects taken *r* at a time
•
$$_{n}P_{r} = \frac{n!}{(n-r)!}$$

• How many ways can 8 children line up in a row?

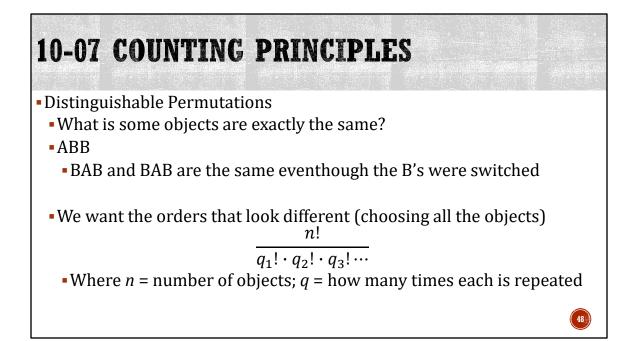
n = 8; r = 8

$$_{8}P_{8} = \frac{8!}{(8-8)!} = 8! = 40,320$$

• A club has 24 members, how many ways can 5 officers be selected?

47

Choose from 24 \rightarrow n=24 Actually choosing 5 \rightarrow r=5 $_{24}P_5 = \frac{24!}{(24-5)!} = \frac{24 \cdot 23 \cdot 22 \cdot 21 \cdot 20 \cdot 19 \cdot 18 \cdot 17 \cdot 16 \cdots}{19 \cdot 18 \cdot 17 \cdot 16 \cdots}$ $= 24 \cdot 23 \cdot 22 \cdot 21 \cdot 20$ = 5,100,480



• How many distinguishable ways to order the letters in BANANA?

49

n=6; q1=3 (A); q2=2 (N)

$$\frac{6!}{3! \cdot 2!} = 60$$

Combinations

Grouping of objects without order

•ABC is the same as BAC

$${}_{n}C_{r} = \frac{n!}{(n-r)!\,r!}$$

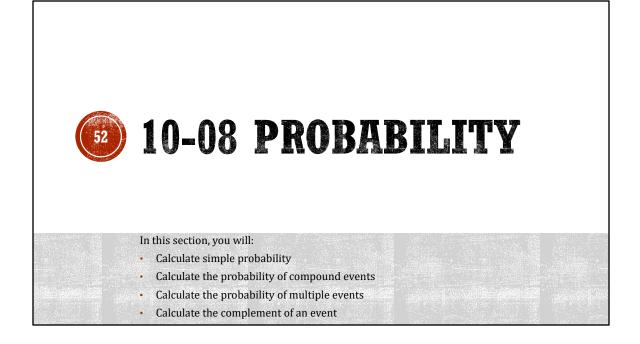
• There are 31 students. How many different groups of 4 can be made?

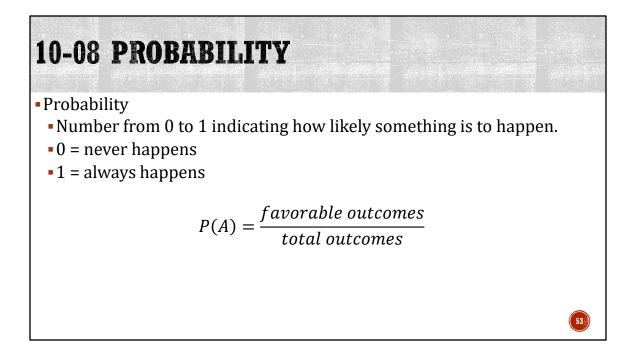
 $_{31}C_4 = 31,465$

 You are forming a 10-person committee from 9 women and 12 men. How many different committees if 5 women and 5 men?

Order is not important \rightarrow combination

Combination of women × combination of men ${}_{9}C_{5} \cdot {}_{12}C_{5} = 99,792$





10-08 PROBABILITY

• A box contains 3 red marbles, 5 black marbles, and 2 yellow marbles. If a marble is selected at random, what is the probability of choosing yellow?

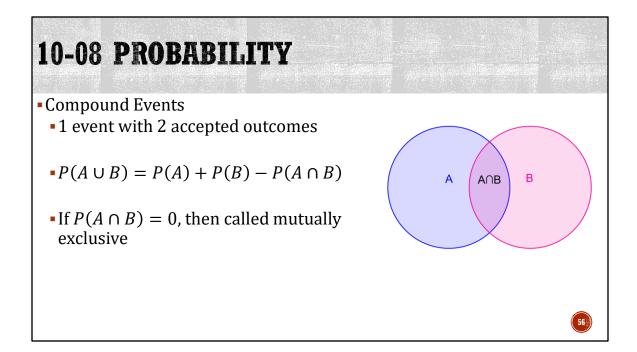
$$P(Y) = \frac{yellow}{total} = \frac{2}{10} = \frac{1}{5}$$

10-08 PROBABILITY

• 2 dice are rolled, what is the probability that the sum is 8?

11	21	31	41	51	61
12	22	32	42	5 2	62
13	23	33	43	53	63
14	2.4	34	44	54	64
15	25	3 5	4 5	55	6 5
16	26	36	46	56	66

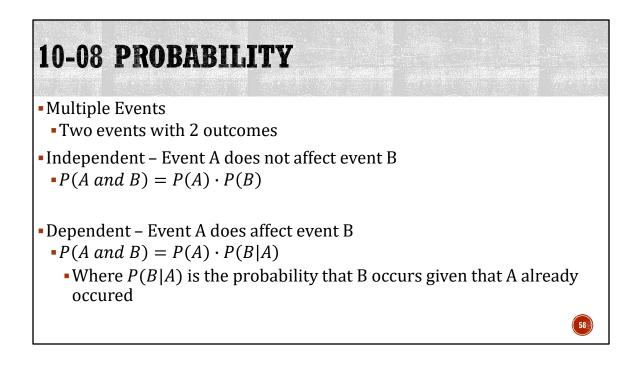
$$P(8) = \frac{8's}{total} = \frac{5}{36}$$

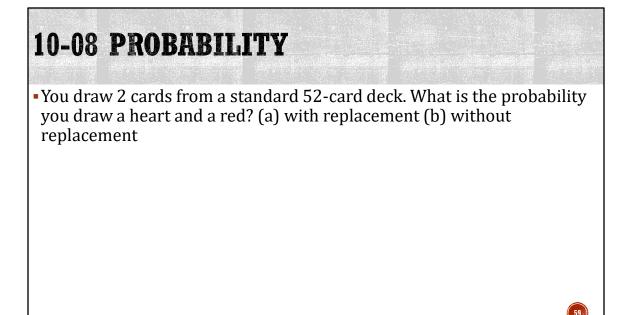


10-08 PROBABILITY

• You draw one card from a standard 52-card deck. What is the probability of drawing a heart or red?

 $P(heart \cup red) = P(heart) + P(red) - P(heart \cap red)$ $= \frac{13}{52} + \frac{26}{52} - \frac{13}{52} = \frac{26}{52} = \frac{1}{2}$





- *a.* $P(heart and red) = P(heart) \cdot P(red) = \frac{13}{52} \cdot \frac{56}{52} = \frac{1}{8} = 0.125$
- *b.* $P(heart and red) = P(heart) \cdot P(red | heart) = \frac{13}{52} \cdot \frac{25}{52} = 0.123$

